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Foreword

This collection of notes is a b:-product of psychological

investigations. The purpose of these studies was to assess

human performance in information processing. In particular,

it has been attempted to measure human capabilities of ac-

qulring and transmitting information. Measurements were ob-

tained in terms of the Shannon-Wiener Measure of Information,

and the related Measure of Transmission Rate. This implies

categorization of all stimuli and responses, and estimation

of the probabilities of occurrences for all possible associ-

ationb of stimuli and responses. In many engineering applica-

tions, the number of categories is low; in psychological ex-

periments, it tends to be high. For instance, in a letter-

recognition experiment, there are 26 possible inputs and out-

puts, and 676 stimulus-response pairs. Furthermore, the proba-

bility of a given answer to a given stimulus depends also on

preceding and simultaneous (neighboring) other stimuli and

responses; thus, the number of distinguishable categories be-

comes very large. In order to associate a probability measure

with every single category, a large sample is needed; the

greater the precision required, the larger the sample. This

can lead to an inordinate amount of labor in data taking and

computing. Moreover, it seems that one cannot reach arbitrarily

high precision by extending the observation to great length;

it is likely that during a long series of trials, and partly

as a consequence of such trials, the underlying probabilities

remain not constant. Thus, it is more than a convenience to
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replace the exact computation with approximating ihortcuts

based on samples of moderate size.

In this laboratory, in dealing with specific aspects of

these problems which arose from experimental studies, we have

tried to obtain solutions of slightly greater generality than

needed in the particular instance. The result are a number

of techniques which have worked in some cases, and may be ex-

pected to be useful in others; they are presented in this

report.

Henry Quas tler
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Incompletely Known Situations 1

INFORMATION MEASURES IN INCOMPLETELY KNOWN SITUATIONS

Henry Quas tier

The estimation of information (or uncertainty, specifi-

city, entropy)# H, involves the following three operations:

(1) the classification of all relevant occurrences. (2) the

estimation of the probability associated with each class, and

(3) the computation of an information function based on these

estimates. In the ideal case, if it is known that there are

exactly t classes, and that the probabilities are pMi) (where

i = 1, 2 . . . r; i p(i) = 1); then, the uncertainty, H, is

defined by the well-known equation

H = - p(i) log p(i).

In most actual situations, it is impossible to know all the

alternatives or to assess accurately the probabilities associ-

ated with every single one. This could seriously impair the

practical value of information measures; it is the purpose of

this note to show that it does not. It will be demonstrated

that a rough estimate of H is possible as soon as the major

alternatives and their approximate probabilities are known.
0.6
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2 Incompletely Known Situations

The measure of specificity is a sum of terms "p log1,0

This function rises steeply up to p = .10, which accounts for

the information measure being not very sensitive to rare alter-

natives; and, it has a flat top for values of.p between 0.20

and 0.60, which accounts for the small effect of moderate

fluctuations in probability. (Fig. 1)

a - Small Effect of Rare Occurrences

The following examples will illustrate that the measure

of specificity is not sensitive to rare alternatives. To be-

gin with a hypothetical case: Suppose nine alternatives are

known to account for 90% of all occurrences; if they are equi-

probable, then their contribution to the measure of specificity

is 9 x I log2 10 = 2.99. We now fill tha remaining 10% with

a varying number of equiprobable alternatives; the results are

tabulated below:

TABLE I:
Effect on Uncertainty of Minor Alternatives (adding up to 10%

.....__of all occurrences).

No. of Proba- Aggre- Total H if No. of equi-
Minor bility gate 90% of-oc- probable al-
Alter- of Contri- currences ternatives
natives each bution made up by giving same
respons- to H 9 equipro- total H
ible for bable alter-
residual natives

10% _ _ _ _ *-_ _ _

(Fig 2a) 1 1/10 .33 3.32 10
( 2b)10 I/I0 .66 3.65 13

100 1/1000 1V 3.99 16
10,000 1/100000 1..65 25

1.000OOO 1/10,000,000 2.33 .31 41

In this situation, if one underestimates the number of minor

alternatives by a factor of 100, the resulting error in H is
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only about one-sixth. If only 5% of all occurrences are to

be filled by unknown minor alternatives, their contribution

is even less conspicuous:

TABLE II:
Contributions to Total Uncertainty by Minor Alternatives

(adding up to 5% of all occurrences)

No. of minor
alternatives Probability of each Contribution to H

1 5/100 .22
10 5/1000 .38
1000 V1lOOO .55
i0,oo i,00,000 .88
1, 000,000 /1,000000,000 1. 21

The difference between the extreme values in this table can

be made intuitively clear by expressing uncertainties in terms

of equivalent number of equiprobable alternatives (as shown

in the table I). Suppose that this number is known for a

single alternative accounting for 5% of the occurrences, the

other 95% be'ng distributed in any arbitrary fashion; then,

if the single alternative is replaced by one million equi-

probable ones, without otherwise changing the distribution,

the equivalent number of equiprobable alternatives is just

doubled.

An investigation by A. A. Blank furnished an impressive

real example. He calculated the specificity of single English

words; for particular reasons, the sample was restricted to

--i er words. The un^ tainty was obtained as

IH log2  N
i

L ,



4 Incompletely Known Situations

where,)i is the observed frequency of the i'th 4-letter word

in the Thorndyke list. He also determined the values of H

obtained by successive elimination of the less frequent

words. The results are shown in table III:

TABLE III:
Measure of Uncertainty for 1-letter words (data of A. A. Blank)

no. of words % of all words H %H

All 4-letter words
in Thorndyke's list 1550 100.0 8.13 100

Only words with
frequency > 150 865 55.8 7.98 98.1
Only words with
frequency 4 750 395 25.5 7.47 91.8Only words with
frequency >, 1550 214 13.8 6.89 84.8Only words with
frequency > 3150 119 7.7 6.34 77.8

Thus, taking into consideration only 1/10 of all categories

(which probably account for more than 1/2 of all occurrences)

yields already about 4/5 of the final measure of specificity.

The examples given show that the information function is

not sensitive to rare occurrences - which means that it should

not be used whenever infrequent occurrences must be heavily

weighed; on the other hand, it can be used successfully in

situations which are not completely known.

b - Small Effect of Small Variations in Probability

Any operation which tends to average probabilities in-

creases the uncertainty; therefore, if r alternatives have

an aggregate probability P then their contribution to the
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measure of uncertainty is greatest if they have all equal pro-

babilities (P/r). We will now demonstrate that moderate de-

viations from equiprobability do not markedly affect the un-

certainty.

Consider the simplest case of P = 1 and r = 2. If the

two probabilities are equal, then H = 1; if their ratio is

1:2, H = 0.92; if the ratio is 1:3, a very considerable de-

viation from equality# H is still 0.81.

For larger values of r, the insensitivity of H against

probability distortion is still more pronounced. For instance,

we may replace the 9 equiprobable major alternatives in our

first example (table I) by sets of 9 altornatives with pro-

babilities staggered arithmetically (fig. 3a) or geometrically

(fig. 3b), stipulating only that the span between the extreme

values should be within one order of magnitude. The resulting

changes in H are quite small.

We come to the following conclusion: if a situation is

analyzed to the degree that we feel we can classify 90-95%

of all occurrences; and if the probabilities associated with

each class are approximately known; then we are entitlGL to

make a rough estimate of the information measure.
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Equivocation I

EQUIVOCATION AS THE SUM OF ERROR-LOCATING
AND ERROR-CORRECTING INFORMATION

H. Quas tler

The estimation of information transmission is based on

the estimation of probabilities for all possible input-output

pairs. There are many cases, in particular those where human

performances are to be assessed, where there is a host of in-

put-output categories, more than one could ever hope to fill

adequately by means of the usual experimental sampling proce-

dures9 and more than would tax the resources of a small battery

of computers. For that reason, it is useful to have bounds

for information transmission and equivocation. In case of

doubt, the bound should be on the conservative side (which

means a lower bound for transmission, an upper bound for equi-

vocation). Ideally, an efficient bound is sought. This means
that if one does make suitable allowance for all possible con-

tingencies in the input-output table, the bound should be

equal - the value sought. Such a bound for the equivocation

can b,, constructed as follows: we imagine an auxiliary source

(an "ideal observer" ) which, knowing both input and output,

furnishes such information as is needed to reconstruct the in-

put from the output. We will show that if most efficient cod-

ing is used, the amount of information produced by the ' -

iary source becomes equal.. tthe equivocation.

Let H(in), H(out), and H(aux) denote the uncertainties

(per unit act) of input, output, and auxiliary source, re-

spectively. Subscripted symbols denote conditional uncer-
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tainties. Then (Shannon, p. 37),

Hout~aux(in) > Hour(in) - H(aux)

If it is possible to reconstruct the input completely from

the output and the auxiliary message, then Houtsaux(in) van-

ishes and

H(aux) > Hout(in)

which gives the upper bound desired. It has been shown (Shan-

non's theorem 10, p. 37) that it is possible to approximate

Hout(in) by H(aux) as closely as it is desired bj means of ef-

ficient coding. More precisely, it is possible to correct all

but an arbitrarily small amount e of the errors in the output

with a channel of capacity Hout(in). For such an efficient

code we have necessarily

Hout (in) * H(aux) ) H ut(in) - e.

It follows that the uncertainty of a fully-correcting auxil-

iary source is an efficient bound as desired.

Shannon's theorem states what could be ideally obtained

with perfect coding; it does not say how such a code is to be

constructed. In the situation we are considering, the auxil-

iary source would have to be designed with perfect knowledge

of the properties of the input and of the channel. But, it

is precisely such knowledge which we try to establish by ex-

perimental tests; hence, we cannot establish an optimum be-

havoir for the ideal observer. What we can actually do is the
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following: we begin by designing an auxiliary source which

will make the equivocation vanish. The information furnished

by this source is necessarily an upper bound of the amount of

equivocation. Subsequently, we use any knowledge we may have

about regularities in the occurrence of errors to reduce the

amount of information required from the auxiliary source.

This can be done in successive steps. In addition, we can

try to name lower bounds for the amount of information required

from the auxiliary source; this, if successful, will bracket

the true value of the equivocation.

It is sometimes convenient to partition the auxiliary

source into two sources, one which furnishes data needed to

locate errors, and one which serves to correct errors after

they are located. Accordingly, the amount of equivocation is

partitioned into error-locating information of amount H(loc),

and error-correcting information of amount H(cor):

Hout(in) = H(loc) * H(cor)

The amount of information needed for error location de-

pends on the pattern of making errors. If this is a lawful

and known pattern, then no error-locating information is needed.

Suppose, for instance, that 8 makes a mistake exactly every

4th time; then to know the location of all errors one has to

know only the location of any one false transmission (a negli-

gible amount of information compared to the total information

in a long message). Or, if it is known that S is always

---------------- - -



4 Equivocation

wrong when his outputs are, say, of the kind IM,U "P," or ",

then no extra information will be needed to disregard these

parts of his report. If, on the other hand, the commission

of an error is a random event, then some information is needed

to locate it. Suppose, now, that the total ensemble of errors

committed includes errors which are quite lawful and predic-

table (provided the laws are known) and others which are ran-

dom events. As only the latter need any error-locating infor-

mation, it follows that the larger the fracticn of random er-

rors, the greater the amount needed for error location.

If, on the basis of prior knowledge of the S's behavior,

one can extract from the output itself any indications con-

cerning error location, then these indications can and should

be used in constructing the error locating code. If it is

known that all outputs are equally liable to be erroneous, then

the amount of the error locating information is maximum.

Therefore, if one does not know how errors are distributed in

the output, he may assume them to be equiprobable and thus ob-

tain an upper bound of the amount of information needed to

supplement the S's report in order to locate the errors it

contains. Deviations from equal distribution of errors have

to be quite pronounced before they reduce the value of the

supplementary information much below the maximum.

The following example is taken from experiments performod

in this laboratory (Quastler and Wulff). Ss had the task of

copying sequences of random letters on the typewriter. In a

particular sample of 10,260 letters, we found 3.4% errors.
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In first approximation, we assume that errors occur completely

randomly; with this model, we get:

H(loo) - 0.034 log 2 0.034 - 0,966 log2 0.966 = 0.214 bits/
letters

However, it was quite obvious that clusters of errors

occurred more frequently than could be expected by chance

grouping. Thus, in one particular sample of 10,260 letters

we found:

single errors... 158 times, or 1,54%

pairs....... 42 " "0,41%

triplets . . . . . . 22 " "0.21%

quadruplets . . . . 9 " " 0.09%

quintuplets . . . . 1 " " 0.01%

Thus, while the over-all probability of any key being

wrong was 3-4%, the probability of a wrong key following a

wrong key was 33.5%, or almost ten times as large. Accord-

ingly, we introduce a second approximation, and treat the

error-generating mechanism as a Markov process, with the pro-

bability of an error occurrence depending on (and only on)

the success or failure of the preceding act. The Markov pro-

cess is characterized by the probabilities;

Prob I uccess following suc cessI. = 0,977

Prob jerror following success = 0.023

Prob {success following error = 0.665

Prob terror following error a 0.335

--- - -



6 Equivocation

From these probabilities follows:

HB(loc) - 0.034t(O.335 1092 0.335 +0.665 1082 0.665) -

0.966 x (0.023 1082 0.023 + 0.977 1082 0.977) = 0.185 bits/
key

Thus, this approximation reduces the error-location uncertain-

ty by about one-sixth. Additional refinements are suggested

by the data, but will not result in any significant reduction

of uncertainty; e.g., introduction of error probabilities con-

ditional upon the two preceding acts, gives a value H2(loc)

which is 0.185 bits/key, thus, not smaller than the value for
H (loc)*

The amount of information needed to correct errors depends

equally on the error pattern. A given output, even if known

to be erroneous, might still suggest a limited range of pos-

sible inputs* For instance, in playing piano, an error is

likely to be not very far from the target key. We have used

this consideration to bracket Hout(in) between values obtained

by assuming error ranges which are certainly too large and too

small, respectively. If no regularities in the error pattern

are known, then all one knows about the input is that it is

not the output; in the special case, frequently occurring in

the laboratory, where one has k equiprobable input categories,

and each input is equally likely to produce a faulty output,

we have

H(cor) =g log 2 (k-1)

In the binary case, H(cor) vanishes.
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The method here discussed is useful in two ways. First#

it establishes the relations between error rate, error pattern,

and information transmission in a fashion which is lucid and

easy to survey; thus, we found it convenient to use for a first

computation of T in situations not previously dealt with. Se-

cond, the method enables one to perform an estimation of T in

successive steps; it establishes upper bounds for the equivo-

cation which together with the lower bound (zero) define an

interval within which T must lie; any knowledge about error

pattern can then be used to narrow down the interval.

Reference:

Shannon, 0. and W. Weaver The Mathematical Theoy of
Communication. University of Illinois Press, Urbana I94



Upper Bounds 1

UPPER BOUNDS FOR THE EQUIVOCATION

A, A, Blank

Shannon defines information transmitted, T(in,out), as

TVinout) = W~in) -H,t(in)

where H(in) Is the uncertainty of the source and H 0ut(in) is

the equivocations or the uncertainty as to the source at the

receiving end of a channel, Set pij = P 'J the joint

probability that the i-th input category is coupled with the

J-th output eategory. We set

P PL jq = Pj

p(j1i) EI q(ilj) scL

H;t(in) =- qj q(ilj) log q(ilj).

The quantity Hj(in) = q(ijj) log q(i~j) is called

the equivocation when the J-th output occurs or the uncertainty

as to the source with respect to the j-th output. If the pur-

pose of the channel is to duplicate the input, that Is, to

couple an input in the i-th category with an output in the

same category# it is desirable to locate and correct errors.

The quantity H 5(in) may be represented as a su

H (in) =H (loc) + H (cor)

j --
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Here,

Hji(loc) =-q(jlj) log q(jjj)

- l-q(JIj]i log [l-q(ili)].

Hj(loc) is called the error. ?ocating information with respect

to the J-th output and represents the conditional uncertainty

of a soiuce which reports on the truth or falsehood of an out-

put in the J-th category. The quantity, H 3 (cor) is called the

correction information with respect to j and satisfies

H (cor) =-[l-q(JIJD log
(3~4J)

5j- q(ijj) log q(ijj) + [l-q(Ijj)] log [l-q(jI33 3

Hj(cor) is the information required to correct an output on

the condition that it falls in the J-th category,

As the error-locating information associated with the

channel we take

H(loc) =-p log p - (1-p) log (l-p)

where p = pii* As the correction information associated

with the channel we take

H(cor) -(l-p) -i- log P-u
P VI

I ~~~ ~ " ________________________________ --- ________
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IneQuality 1! Hout(in) ( I(loc) + H(cor)

Pro: Hout( in) - qj q(ij-J) log q(ilj)

-~ ~'qj q(flj) log q (iii)

q q(i/i) log q(ifi)

qj q(ilj) log q(ilj) + q1*O log O

, i: ) log (p:L

pi log/i
log (')I L

P p0 lgp- (Pi-pii) log (pi-pii)*

Sines the last term on the right is equal to II(loc) + H(cor)

the proof is complete. Inequality 1 may be replaced by

stronger inequalities with respect to H(loc) and H(cor). In

particular# it will be shown that lqj Hj (1oo)4 H(loc)

and qj Ej (cor) 4 H(cor).
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Inequality 2:_ jqj Hj(loc) 4, H(loc)

Proof:

q Hi lo) Eq q(jlj) log q(a IJ)

..e Hj(100) q= aj o Cq (IJ

-j&'C1-ala) log 'E~a~q
j q(-~jj

log J-i )lg!aa q -i

-p log p (1) log (q-) H~o)

Ma
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Ineguality 3: 8qj Hj(or) . H(oor).

The proof of this inequality requires a preliminary result*

Lemma: lo ;Ik o

provided only that O-i, Wij 0O )i 1.

Proof of Lemma:

le X. log 0 w.A f :C xj log + .2 (l.X) log 1

Slog 1-l9 xj 
_

-a-i 

ly*-,

we have- o o
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Proof of~ Inequzality 3:

-qj H, (cor) pij' logq

a ii j

=p~ log qp

Noting that PIJ4 .

we have by the leumma above,

-~qj Hj(oor) ~ -j ~~~ log j)63i

Pipi log (j.Pj
(1-p - qpi)

<0 (p- jlog (P-Pip +* (pj-pj) log 1 ( -pi i

- ( ) log (p1 -p11  (l-p) log (l-p)
i i

H 1(1cc).
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The value Hout(in) is over-estimated by the value Hout(in)

, H(loc) + H(cor). It follows that.

H(in) - 'out(i n ) T(in;out)

In other words, we err on the conservative side if we take

rout(in) as an estimate of Hout(in). The final result may

be considered as an example of the general statement that any

source which fully corrects the errors of transmission must

have an entropy no less than Hou (in).

iout

AW ****-.'



Remarks, Method of Hints 1

REMARRS ABOUT

THE METHOD OF HINTS

N, Quastler

A subject receives a message. One wishes to establish

how much of the message was assimilated. "How much" is taken

to mean "how many information units" (or "bits"). If the S

is able to transmit the message correctly, then he certainly

has assimilated its information contents If his transmission

is only partially correct, then we may give the S hints con-

taining some auxiliary information which wi?,l help him to cor-

root his errors and reconstruct the entire message. It can

be shown that

["ount of informatio > mount of infor- [Amount of 1
L assimilated J L ation in inputJ informationI] in hintsJ

where all amounts of information are measured in the same

uhits (bits).

There are many ways of giving hints. A good method will

be one which fulfills the following conditions:

(i) it permits accurate estimation of the amount of infor-

mation contained in the hints,

(ii) it does not confuse the S,

(iii) it gives as little information as possible.

The issue can be made clear by reference to a familiar

situation. A student is being examined; one-wishes to give

him credit for what he knows. Notoriously, his first answers
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do not reveal the full extent of his knowledge. The examiner

tries to help with hints. He must try to keep the actual in-

formation in the hints small (otherwise the student could not

be given credit for the answer) and not to-confuse the student.

The requirement dealing with numerical estimation does not

apply, since no quantitative estimation of the knowledge is

obtained.

The method of hints is analogous to an often-used method

of estimating amounts of information transmitted:

linformation nformanformatlo needed to locate I
Amount o Amount of Aount of informationl

transmitted L in input and correct errors

But, the two are not identical. It is true that the hints

.. supply "information needed to locate and correct errors"; how-

ever, in addition to this information S may use information

stored in his memory but not utilized in his first statement.

For instance, a situation like the following might happen:

the display is t. dot on a vertical line; the line is thought

to be divided into intervals of equal length; S is asked.to

state which interval contains the dot. Suppose he makes errors

with an over-all probability V and that, in case of error,.he

is too high by one interval with a probability of a, too low

by one interval with a probability of (1-a); no other errors

occur. Then

j unt of information]
ed to locate errors, * - q log2 q - (l-q) log2 (l-q)

per act .
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UAmount of informa-
tio neddt q la 102 a 4 (1-a) 1082 (-tionnee~to=(a3

* correct errors, [a.
L per act J

These two quantities must be deducted from the input informa.

tion to obtain the amount of information transmitted* Suppose*

now, that S has some recollection about the direction of his

error; then, telling him when he has committed an error will

be all he needs to produce the correct statement. Thus, the

amount of information assimilated will be greater than the

amount of information transmitted (in the first statement) by

the amount .- q [a log2 a + (1-a) q (1-. 1. Some experi-

ences, reported elsewhere in this collection, indicate that

the example given, while greatly simplified, is not unrealistic.

In general, the estimated "amount of information assimi-

lated" may be larger or smaller than the estimated *amount of

information transmitted," depending on the amount of such re-

tained information, on the efficiency of giving and utilizing

hints, and on the efficiency of the error locating and correct.

ing code. Ordinarily, we do not expect the two to differ

widely from each other.

The following paper, by A. A. Blank, gives a model of

performance for one particular Method of Hints, It is the

only model which has been worked up in some detail, and was.

used on experimental data.

4,



A Method of Hints 1

A METHOD OF HINTS

,'A, Blank

Let us suppose we have a stochastic source of independent

inputs ai (1 = 1, ...,r), and a response generator which has

the conditional probability q(i j) of ai having been emitted

by the source when the response is aj and each response is in-

dependent of any other. The uncertainty as to the source when

the symbol a3 has been reported is defined as

H (in) =- q(ilJ) log q(ilj).

Suppose again that when the receiver is in error the fact of

the occurrence of error is registered and fed back and the res-

ponse generator is then constrained to report differently. We

shall consider two possibilities:

I. Complete utilization of the order of probability.

Let the conditional probabilities of error be ordered

q(21J) > (31j) ... >q( IrIJ>

where 129000s1 r is some:permutation of the indices excluding J.

We shall suppose that, in the event of error, the response gen-

erator will report symbols in decreasing order of probability

until the correct one is reached. Let %(j) denote the fre-

quency with which 3 is reported correctly at the v-th report.

We have

QV(J) = a(iIj) (v l,...,r)
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wheie we set 1i J. Clearly

13(in a -~ q.(j) log Q.(j)

The equivocation or'unoertainty as to the source is given by

Houtlin) =- qj(x)

=- 1 qj%(1) log q(j)

Bindep,with complete knowledge of the order of probability of

the various errors we may compute the equivocation by using

the method of hints (feed back an error message) and tabulat-

it the probability for each initial response of obtaining the

correct report at the v-th stage,

• 2* emanlete utilization of the order of probability

Let us suppose that the generator reports in the order

of deereasing probability until the k-th stage and that from

the (k 4 l)-th stage on responses are chosen with equal proba-

.bility from the remaining alternatives, In that case set

%(J). q(v.J) v a (l...k)

-;- P~1(l * 1 - %1

We have&

It(in) C £ ~j log %V(J) - (3) log r- H E(in)
Vol

* -_ _ __ _ _ _ _ _
-!I
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Hj(in) represents the maximum possible equivocation with res-

pect to the source if the order of the first k conditional

probabilities of response are utilized in the prescribed man-

ner. This estimate sacrifices only knowledge with respect

to the rarer events.

The inequality above leads to the value qH (x) as an

upper estimate for Hout(in),

qjiHj (in) > Hout( in)

The computation of this estimate requires less than the compu-

tation of H out(in) since it requires k r categories (k = X

*k(J) r), instead of r2 categories.

It is not difficult to establish, with the same data,

lower estimates for Hj(in) and hence Hout(in). We set

I k
Hj(in) = - ! QV(J) log QV(J) - P(J) log P(J)

v=l
k r

where P(J = 1 - !Sl v()=V q4KLj

Hj(in) represents the minimum equivocation with respect to

the source if the first k responses are ordered according ta

the conditional probabilities of initial response. From the

inequality

r 1
- t q(ivlj) log q(ivlj) > - -g q(iVIj) log q(ivlJ)

vwk+l vwi+l vwkl

it follows that

tHi ) Hj(in)
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A more refined estimate is sometimes given by

. k
Hi(in) =- Qv(J) log QV(J) - P(J) log qk(J)

v=l

H (in) approximates the minimum equivocation with respect to

the source if the first k responses are ordered according to

the conditional probabilities of initial response and if the

probability of correct response at any stage does not exceed

that atany preceding stage. From the inequality q(ikI J) *

Qk(j) - q(ivlj) for v ) k, we have

r r
- £ q(ivlj) log q(ivlj) - C q(ivlj) log q(ikJ)
v=k+l v=k+l

and hence,

X3 (in) 4 Hi(in)

If Qk(J) < P(J) then H (in) is a better estimate of H (in)

than H;(in)* Let

11j(in) = Max Hj(in), Hj(in)) Hij(in).

where Hj(in) is the better approximation to Ha(in) of the two
I It

lower bounds Hj(in) and Hj(in). We have

3. Pooled data.

In some instances it may be impossible to obtain reliable

values of the frequenoy of correot response at the v-th stage.
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for each initial response. One may only know or be able to

utilize the frequency of correct response at the v-th stage

taken over all initial reports. This would be the value

QU61 rqj qvj)

We may estimate Hout(in) by

10 .t(in) A - % log QV,) %, qjHj(in) > Hout(in).
Val

If no data are obtained beyond the k-th response we may be

sure that fut(in) is bounded above and below by

Rout(in) 4 Hout (in)£ 4. (in)

where

Tlut(in) =- S, % log QV - Plog r-

and

"1-'I'

Jhe t(in) a Max &rers(in) (infr n

Here

P - 1 g- .] and
1104~in QVlog QV-P log P

Hwt(in).m $ Q.log QVP log Qke

The barred symbols represent a lumping of response data into

fewer categories and the starred symbols represent the equal
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division of response data into available categories.

We cannot be sure of the relationship of Hout(in) to

Hout(in), but we do know that Hout(in) is an overestimate.

To obtain a lower estimate of Hout(in) from pooled data

we may proceed as follows:

We have Hout(in) H(inout) - H(out)

r r
Now H(in,out) - :E 1 Pvj log p,,

v=l j s1

where
PvJ = qj Q(J).

Clearly PVj QV.

Now 3 r
Nw P log "- > PVJ- log P ~j QlogQV

, 1 enoo,
Henuce n, "£ qv log Qv - ou>

Ju1 Jl o

H(out).

If we omit the data for the categories v = k lp+..wr, we ob-

tain a still lower estimate

Hout(in) > %ut(in) " H(out) )/ But(in) - H(out)

These last as-tmates are very orude. Zero should often be a

better lower estimate of Hout(in).

-wa-M
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THE UNCERTAINTY MEASURE FOR QUANTIZED NORMAL DISTRIBUTIONS

K. A. Blank

Whenever a discrete random variable may be thought of as

having its values imbedded in a continuum there is a sugges-

tion that it may be convenient to consider the distribution

of the discrete variable as the quantization of the distribu-

tion of some continuous random variable. In the usual game

of darts, for example, the compartment in which the dart

sticks is a discrete variable, but represents in an obvious_

way the quantization of the error distribution in attempting

a strike: at the bull' s eye.

In some communication problems the discrete outcomes aris-

ing may also be thought of as a quantization of a continuous

distribution (e.g., when a dial is read to the nearest tenth

of a division). In information theory, the uncertainty func-

tion is not defined in the same way for discrete and continu-

ous distributions. The uncertainty for a discrete variable

is defined as

PklgPk

where the value Pk denotes the probability that the variable

will take its k-th value. In the continuous case, tje uncer.

tainty is defined by the integral

(2) H' f log f(i ) d F

where denotes the random variable, f ( ) is its probabil-

.... m.......
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ity density# F ( ) its cumulative distribution function and

fis the sample space in which 0 varies. As immediate

points of difference between the two definitions it will be

observed that H is non-negative while H may assume any real

-value whatever.

The most useful distribution to treat in this manner is

the quantized normal distribution* The normal density func-

tion 2
(3) f(Z) W e -

gives

(4) '! log2' e "

and sInce 6S may be any non-negative value Ht may assume any

value from minus to plus infinity. If a discrete distribution

may be interpreted as a quantization of a normal distribution

it is especially convenient to use (4) silce all we have to
I I

do to compute H is to find ' . H will be a good approxima-

te H if the distribution is quantized into units sufficiently

small with respect to 6 • If the precision is high and most

of the values of the discrete variable fall in one class, then

H will be very close to zero but H' will take on large nega-

tive values; in this case, therefore, the approximation cannot

be used.

Let us see generally how H' is related to H. If the

axis of the continuous variable is broken into intervals of
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size , and X , then H may be computed as a function of

X from (1) where -2

dt (k0 O ± 2.

The values of H (X) and H(7) are both plotted against X

on the accompanying graph. For X > 2, that Is, < w

may for all practical purposes assume H' = Ho For W < 0.1,

or > 10 (, we may assume H = 0. A nomogram for interme-

diate values of X is included.

In effect, when a distribution is obtained which may be

assuwed to be quantized normal, the associated uncertainty may

be estimated by obtaining the variance of the corresponding

continuous normal distribution and looking up H(W) on the

graph* Alternatively, one may obtain H' (X) and look up,

H(W) on the nomogram.

* Sheppard's estimate then gives 6" by

2 2 1 2

where 6 ' is the variance of the quantized distribution.
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Different Methods 1

DIFFERENT METHODS COMPARED

H, Quastler

A - "INFORMATION TRANSMITTED" VS. "PERCENT SUCCESS"

Among the measures which can be used assess human per-

formances are "information transmitted" and "percent success.

The two measures are often roughly proportional.

The amount of information transmitted can be thought of

as the sun of information transmitted in successful acts,

minus information needed to locate successful acts, plus in-

formation transmitted in errors (due to "near misses" and

other regularities of error patterns), Using the symbols:

p . e . per cent success

H(in) . . . Information input, per act

H(loc) . . . Information needed to locate errors, per
act

H(cor) . . . Information needed to correct errors, per
act

T(in;out) . . Information transmitted, per act

we have

(nformation transmitted
Lin successful acts J = p . (n)

Flnformation transmitted a (1-p) H(m) -H(oor)u..- in errors

and

T(in;out) = H(in) I- - H(loc) - H(cor)

The claim made is that often

p * H(in) f T(in;out).

"7 7,7 7" -, -,
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Now, this is certainly not generally true. In fact, one can

have perfect transmission with nothing but errors (e.g., if

a transducer receives a binary message and passes it on after

inverting each symbol); it is also possible that no informa-

tion at all is carried in errors, in which case p . H(in) is

an overestimate of T(in;out). Ordinarily, neither extreme is

likely to occur. For moderate error rates, and a moderate

amount of information carried in errors, the approximation will

not be too bad. This is shown graphically in the figure.

The following two extreme examples are taken from work

done in this laboratory. In one (A. A. Blank), S had to re-

cognize letters; H(in) per letter was varied by using vari-

ous constraints. In this case, there is very little informa-

tion carried in errors; in most cases, S recognizes a letter

accurately or not at all. Hence, p * H(in) is larger than

T(in;out):

H(in), Sub. A Sub. B
Input: per e.ater k.H in) T(inout) R.Hfin) T(in:out)
Single equiprobable

letters 4-7 2,2 1e5 2.5 1.9
Lette .s, English

frequencies 4.1 2,3 1.4 2.5 1.7
Pairs of initial

letters 3.2 2.3 1.4 1.9 0.9

4-letter words 1.8 1.6 1.0 1.7 1 1.5

* estimated by Method of Hints

The next example (J. W. Osborne and K. S. Tweedell) deals with

the task of locating a marker on a scale. In this case, near-

misses are the rule. Thus, errors carry considerable informa-

tion, and p . H(in) is sometimes less than T(in;out):
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no. of intervals Sub. F Sub. V
1* scale - in) 1p.H(in) T(in out) p.H(in) T(in out)

16 4.0 3.3 3.2 4.0 4.

20 4.3 3.2 3.2 -

24 4.6 2.3 2.9 4.2 4.1

32 5.0 2.7 3.1 3.5 3.8

36 5.2 2.9 3.3 3.6 3.7

48 5.5 2.5 3.2 4.5 4.3

B - "EROR MAGNITUDE" VS. "HINTS"

This oOparlison was made during an investigation of the

amunt of information assimilated from a singl.-pulse display*

The display oontained one or two strips or dials, divided into

diseote intervals; a marker was plaoed at the center of any one

interval; the subject had to state In whieh interval it was

(J.W. Osborne and .. Tweedell).

In four partioular runs# the equivooation was evaluated both

by the method of hints and by error magnitudes. In the former

ase, the prooeduroe followed was that described by A. A. Blank

(#A Nothd of Hinto,' this collection); in the latter oase, the

proeedure was based on the discrepanoy between the izput and S's

first statement. Loet i be the magnitude of this error, in soale

intervalk; vi be the observed frequenoy of errors of magnutude is

ad I(*) the wnertainty ooncerning the error magnitude; then

Vi -
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If H(Z) would be evaluated separately for each output cate-

gory, then it would be an accurate estimate of the equivoca-

tion; if all output categories are lumped (as in this case)

it is a lower bound.

The following table shows the results:

trials mean est. T(in;out)
no. of per mean

Display tests test H(in) error magnitude hints

horizontal strip 5 80-120 4.77 3.772) 3.90
with intervals
in black & white

horizontal strip 5 80-120 4.77 3.472) 3.52
(intervals

blank)

2 strips, 24 1) 8 80 4.58 2 . 5 1 3T 2.62
intervals,

marked black
and white

2 dials, 24 1) 8 80 4.58 3.44 3.52
intervals

1) results given for single strip or dial.
2) terminal intervals treated separately.
3) no separate treatment of terminal intervals.

In all four cases, the estimation by the method of hints

gave slightly higher values for T(in;out). This might mean

that S has assimilated some information which does not appear

in his first response, but is produced in response to hints.

C - "3OR.0 MNIMTTDE", VS. "VARIANCE"

This comparison was based on data obtained in a recogni-

tion experiment. The display was a dot in a square. The dot

could assume a limited number of positions in the square.

A"., = .
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The subject warn given a score sheet on which the permissible

positions were marked; he had to state in which of these poo-

itiona the dot was located. (J. W. Osborne & K. S. Tweedell)o

We evaluateds separately, location vertically and hori-

sontally. The data were worked up by evaluation of error mag-

nitude, as desoribed above. In addition, we computed the

varisnoe, or mean squared deviation between input and output#

lumping all output categories. From the variances the equi-

vocation can be computed (see A. A. Blank, "The Uncertainty

Measure for quantized Normal Distributions", this volume).

The following table shows the amounts of equivocation,

by the two alternate methods; each entry is based on 40 trials:

"0.of possible Method of Subject
positional computing

eQuivooatIon 1 2 3 4

1z 15 31M1 2) 1.8 2.2 1.6 1.9
V, 2.0 2.4 1.8 1.8

19 x 19 so.. 2.2 2.0 19 2.0
Vo 2.2 2.2 2.0 1.9

31 z 31 R.. 2.9 3.2 2.7 2.7
V. 3.2 3.2 2.7 3.0

lJ1 Irror magnitude.
2 Variance.

One sees that the *Variance" method tends to give slightly

hghelh values for the equivocation. This in caused by the

presence of a few very large errors, which contribute greatly

to the variances but not much to the uncertainty measure.

_ _ _ _ _ _ _ _ _ _ _ _
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